well, here's some more implementions of HL engine functions. Some of them are "crazily" optimized

I also inlined all of them to make them faster
Code:
inline float UTIL_AngleMod(float a)
{
// this function adds or substracts 360 enough times needed to the given angle in
// order to set it into the range [0, 360) and returns the resulting angle. Letting
// the engine have a hand on angles that are outside these bounds may cause the
// game to freeze by screwing up the engine math code.
return (360.0 / 65536) * ((int)(a * (65536.0 / 360.0)) & 65535);
}
inline float AngleNormalize(float angle)
{
// this function adds or substracts 360 enough times needed to the given angle in
// order to set it into the range [-180, 180) and returns the resulting angle. Letting
// the engine have a hand on angles that are outside these bounds may cause the game
// to freeze by screwing up the engine math code.
return (360.0 / 65536) * ((int)((angle + 180) * (65536.0 / 360.0)) & 65535) - 180;
}
inline void ClampAngles(Vector &vecAngles)
{
vecAngles.x = AngleNormalize(vecAngles.x);
vecAngles.y = AngleNormalize(vecAngles.y);
vecAngles.z = 0;
}
void
#ifndef __BORLANDC__
inline
#endif
SinCos( float rad, float *flSin, float *flCos )
{
#ifdef __linux__
register double __cosr, __sinr;
__asm __volatile__ ("fsincos" : "=t" (__cosr), "=u" (__sinr) : "0" (rad));
*flSin = __sinr;
*flCos = __cosr;
#else
#if !defined(__BORLANDC__) && !defined(_MSC_VER)
*flSin = sinf(rad);
*flCos = cosf(rad);
#else
__asm
{
fld DWORD PTR[rad]
fsincos
mov edx, DWORD PTR[flCos]
mov eax, DWORD PTR[flSin]
fstp DWORD PTR[edx]
fstp DWORD PTR[eax]
}
#endif
#endif
}
inline float UTIL_AngleDiff( float destAngle, float srcAngle )
{
return AngleNormalize(destAngle - srcAngle);
}
inline float UTIL_VecToYaw( const Vector &vec )
{
// the purpose of this function is to convert a spatial location determined by the vector
// passed in into an absolute Y angle (yaw) from the origin of the world.
if (vec.x == 0 && vec.y == 0)
return 0;
else
return atan2(vec.y, vec.x) * (180 / M_PI);
}
inline Vector UTIL_VecToAngles( const Vector &vec )
{
// the purpose of this function is to convert a spatial location determined by the vector
// passed in into absolute angles from the origin of the world.
float yaw, pitch;
if (vec.x == 0 && vec.y == 0)
{
yaw = 0;
pitch = (vec.z > 0) ? 90 : 270;
}
else
{
yaw = atan2(vec.y, vec.x) * (180 / M_PI);
pitch = atan2(vec.z, vec.Length2D()) * (180 / M_PI);
}
return Vector(pitch, yaw, 0);
}
inline void UTIL_MakeVectors( const Vector &vecAngles )
{
float sp = 0, cp = 0, sy = 0, cy = 0, sr = 0, cr = 0;
float angle = vecAngles.x * (M_PI / 180);
SinCos(angle, &sp, &cp);
angle = vecAngles.y * (M_PI / 180);
SinCos(angle, &sy, &cy);
angle = vecAngles.z * (M_PI / 180);
SinCos(angle, &sr, &cr);
gpGlobals->v_forward.x = cp * cy;
gpGlobals->v_forward.y = cp * sy;
gpGlobals->v_forward.z = -sp;
gpGlobals->v_right.x = -sr * sp * cy + cr * sy;
gpGlobals->v_right.y = -sr * sp * sy - cr * cy;
gpGlobals->v_right.z = -sr * cp;
gpGlobals->v_up.x = cr * sp * cy + sr * sy;
gpGlobals->v_up.y = cr * sp * sy - sr * cy;
gpGlobals->v_up.z = cr * cp;
}